Categorías
Sin categoría

Jorge Borrego

1/9/2020
Speaker: Jorge Borrego
Title: On a class of  para-orthogonal polynomials  associated to  a  Schrödinger equation with energy dependent potential. 
Abstract: We study  a class of para-orthogonal polynomials associated to a  family  of hypergeometric orthogonal polynomials on the unit circle which define   explicit solutions of an energy dependent potential Schrödinger equation.  The potential contains, as a particular case, the  symmetric Rosen–Morse potential.  We  show analytic properties,  asymptotic behavior  and relations of orthogonality of  the eigenfunctions of the energy dependent Schrödinger equation.

References:
Borrego-Morell, J.A.; Bracciali, C.F.; Sri Ranga, A. On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle. Mathematics 2020, 8, 1161.